The gamma expansion of Eulerian polynomials via continued fractions

韩 斌(法国里昂第一大学)

发布日期:2019-11-08点击数:

报告人:  斌(法国里昂第一大学)


日  期: 2019年1111


时  间: 上午10:30


地  点: 理科楼 LD202


 要: A formula of Stembridge states that the permutation peak polynomials and descent  polynomials are connected  via a quadratique transformation. Rephrasing  the latter  formula  with permutation cycle peaks and excedances  we are able to prove a series of general formulas expressing polynomials counting permutations by various excedance statistics in terms of refined Eulerian polynomials. Our methods include permutation enumeration techniques  involving variations of classical bijections from permutations to Laguerre histories, explicit continued fraction expansions of combinatorial generating functions. This talk is based on joint work with Jianxi MAO and Jiang ZENG.


报告人简介韩斌,博士毕业于法国里昂第一大学和兰州大学,研究方向为计数组合学里面的排列统计量、连分式、组合序列的伽马正性等,已在应用数学进展(Adv. Appl. Math.)和电子组合(Electron. J. Combin.)等期刊发表论文。


公司联系人:傅士硕


欢迎广大师生积极参与!


关于我们
suncitygroup太阳集团的前身是始建于1929年的suncitygroup太阳集团理公司和1937年建立的suncitygroup太阳集团商公司,理公司是suncitygroup太阳集团最早设立的三个公司之一,首任经理为数学家何鲁先生。